EPC eGaN[®]FET 第十一阶段产品可靠性测试报告

美国加州El Segundo市、宜普电源转换公司 - Alejandro Pozo博士、Shengke Zhang博士、Ricardo Garcia、John Glaser博士、Zhikai Tang博士及Robert Strittmatter博士

由于宜普电源转换公司(EPC)eGaN[®]FET器件迅速在宽泛的不同应用中被采纳,因此需要继续不断累积可靠性统计数据,并对氮化 镓器件的基本失效物理特性进行研究。第十一阶段可靠性报告增加了在前十分报告 [1-10] 中发布的不断增长的知识,以及涵盖了 几个关键的全新题目。

与传统的硅MOSFET器件相比,由于氮化镓是一种相对较新的半导体技术,因此很多客户要求进行AECQ101认证标准以外的其 它测试,并深入了解可能导致器件故障的独特失效机理。在此报告中,我们提供了附加测试的几个范例。

从2010年3月[11]投入量产以来,氮化镓 (GaN) 功率器件建立了卓越的现场可靠性记录。本文将讨论实现这个良好记录的策略, 是在各种测试条件下,反复对器件进行测试、找出器件的失效原因,从而为业界构建越来越稳固的产品。

需要在标准认证测试以外进行额外测试

为什么要在标准认证测试以外,进行反复测试?

典型的半导体标准认证测试,在长时间或若干个周期内,对器件施加接近数据表上所指定的极限压力。认证的目的,是对相当大量的器件进行测试后,没有任何器件发生故障。

这种测试是不充分的,因为它只报告器件通过了非常具体的测 试条件。通过反复测试器件,从而了解器件性能与数据表所列 出的极限值,还有多少余量。而更重要的是,可以了解器件内 在的失效机理。通过了解这个机理、知道器件失效的根本原因 及器件在工作若干时间内的行为,就可以了解到器件在一般工 作条件下,它的工作温度、可承受的电气或机械应力及其安全 工作区域(对于此种测试半导体器件的方法的最佳描述,请参 看参考文献[12])。

氮化镓功率器件应对的主要应力和其内在的失效机理

氮化镓功率器件主要面对的应力是什么?每种应力使得器件失 效的机理是什么?

与所有功率晶体管一样,主要的应力种类包括电压、电流、温度和湿度,以及各种机械应力。 但是,有许多方法施加这些应力条件。例如,GaN FET上的电压应力可以在 栅极端至源极端

(V_{GS}) 施加应力,也可以施加在漏极端至源极端(V_{DS})。这些 应力可以连续施加而作为DC偏压、开/关循环或高速脉冲。电 流应力可以施加作为连续直流电流或脉冲电流。器件可以通过 在预定温度极限下操作并保持在一段时间内,连续对器件施加 热应力,或者对器件施加循环温度。 通过对器件施加以上不同应力条件至产生大量故障后,可了解受测器件的各种主要固有失效机理。为了在合理的时间内使得相当数量的器件失效,应力条件通常需要大大超过产品数据表上列出的限制值。需要注意确保这些过大的应力条件所引致的器件失效情况,并不是器件在正常工作时永不会遇到的。为了确定情况并非如此,需要仔细分析失效器件,以确定其失效的根本原因。只有通过验证根本原因,才能真正了解到器件在各种应力条件下测试出的行为。

应力	器件/封装	方法	内在的失效机理	测试报告表明	
电压	器件	HTGB	介电层崩溃(TDDB)	本报告	
			阈值漂移		
		HTRB	阈值漂移	本报告	
			阻抗漂移		
		ESD	介电破裂	[2,3,6,7,8,9,10]	
电流	器件	古法 (FM)	热迁移	进行中	
		且加(CM)	电迁移	进行中	
电流 + 电压 (功 率)	器件	安全工作区域	热失控	本报告	
		短路	热失控	本报告	
电压上升/下降	器件	硬开关可靠性	阻抗漂移	本报告	
电流上升/下降	器件	脉冲电流 (激光雷达可靠性)	没有失效	本报告	
温度	封装	HTS	没有找到	[6,7,8,9]	
湿度	封装	MSL1	没有找到	[3,4,5,6,7,8,9,10]	
		H3TRB	没有找到	[1,2,3,4,5,6,7,8,9,10]	
		AC	没有找到	[4,5,6,7,8,9]	
		uHAST	没有找到	[10]	
热机械	封装	TC	锡球抗剪强度	[1,2,3,4,5,6,7,8,9,10]	
		IOL	锡球抗剪强度	[7,8,9,10]	
机械	封装	弯曲强度测试	分层	进行中	
		芯片剪切测试	锡球抗剪强度	本报告	
		封装测试	封装保护层开裂	本报告	

表1:测试eGaN FET器件的应力条件及其固有的失效机理

本报告的重点和结构

第十一份测试报告的重点是在表1右栏中,用颜色标示的部分。第一个 主题将讨论影响eGaN器件的栅电极的内在失效机理。这也许是最明确 的结论的最简单分析,因此我们在本报告中首先详述。

第二部分讨论了动态R_{DS (on})的内在机理。动态R_{DS (on})引起了设计工程师、可靠性专家和学者的广泛关注。在本节中,将关键机理分开和如何在了解这些机理后,构建更稳固的器件。

第3节重点介绍eGaN器件的安全工作区域(SOA)。该主题已在基于硅 的功率MOSFET中进行了广泛的研究,其中观察到次级击穿机理会限 制其在高漏极偏置条件下的效用[13]。几种eGaN产品在其数据表所载 的安全工作区域内,进行了反复测试,从而找出安全裕度。在所有情况 下,数据均表明,在数据表SOA中工作时,eGaN FET器件不会失效。

在第4节中,对eGaN器件进行了短路条件下的破坏测试。目的是要确定 发生灾难性故障之前,器件可以承受应力的最长时间和最高功率密度。 该信息对于需要在设计中包括短路保护的工业和电机驱动工程师来 说,至关重要。数据表明,失效机理受热量限制,在推荐的栅极驱动下, 器件的耐受时间超过10 μs。 eGaN器件已广泛被应用于全自动驾驶汽车、卡车、机器人和无人机上 的激光雷达设备。eGaN器件具备快速开关速度,小尺寸和高脉冲电流 等优势,可实现更高的分辨率,从而使得激光雷达系统能够在更远的距 离"看得"清晰。激光雷达系统突破了动态电压和电流(di/dt和dv/dt) 的极限,超越了硅技术。在第5节中,我们介绍一种定制测试系统,用 于评估在长期激光雷达脉冲应力条件下,eGaN器件的可靠性。迄今为 止,eGaN器件已通过了超过4万亿脉冲测试(典型的汽车使用寿命), 而没有任何器件失效或出现明显的参数漂移。

在第6节中,我们介绍了eGaN晶圆级芯片规模(WLSC)封装的机械力 测试。利用模切(面内力)反复测试器件至其失效的结果表明,器件比 MIL-STD-883E标准所描述的更稳固。此外,背面压力(平面外)的测试 表明,器件封装能够承受400 psi的应力而不会失效。

第7节简要介绍了现场可靠性的统计信息。

第1节: 栅极上的电压/温度应力

图1展示了宜普电源转换公司 (EPC) 的氮化镓场效应晶体管EPC2212 [14],它的栅极故障的威布尔图。横轴表示失效时间。 垂直轴显示在栅 极施加不同应力后的累积失效概率。 左图在室温下具有不同的电压,右图则显示在摄氏120°C时施加的两个不同电压。请注意,该器件在数据手册中,该器件的最大栅极电压为6V,但即使在8V电压下工作了很多小时后,也很少器件失效。

图1: EPC2212器件在栅极至源极失效的威布尔图。请注意,即使在8V_{GS}时,也很少失效,但该器件的最大V_{GS} 额定值为6V。左侧温度为摄氏25度,右侧为摄氏120度。

在图2中,这些数据已转换为器件失效/故障率。左图是在25°C和120°C 时,这些器件的平均失效时间(MTTF)与V_{GS}的比较。右图显示在25°C 时,各种失效概率与V_{GS}的关系。请注意,失效率对温度不是很敏感,但 对V_{GS}非常敏感。 右图展示出如果VGS为6 VDC,器件的绝对最大可电压),可以预期10年内,百万分 (ppm)之10至100的器件会失效。但是,推荐的栅极驱动电压为5.25 V,并且该电压下的预期失效率在10年内小于1 ppm。

图2: 左图是EPC2212 eGaN FET 在25℃和120℃时的平均失效时间 (MTTF) 与V_{GS}的关系。 右图显示了在25℃时,各种失效概率与V_{GS}的关系。

在所有给出的这些条件下,如果器件的主要失效机理都是相同,这些结论是对的。为了确认这一点,对失效元件进行失效分析,并得出相同的结果,如图3所示。参考图3中的黄色圆圈,它表示失效发生在栅极金属和金属1层之间。

对于EPC2212器件来说,这两层由硅化镓层隔开。正是这个硅化镓层失效,而不是下面的任何氮化镓(GaN)层失效。了解此失效机理,并且了解它与 大多数半导体的电介质层中常见的、会随着时间而变化的电介质失效机理(TDDB)一致,由于栅极应力都是在数据手册的限制内,因此,图2中用来 预测器件失效率的概率,可信度很高。

图3: EPC2212 eGaN FET栅极区域的扫描电子显微镜 (SEM) 图像。黄色圆圈表示器件在栅极金属和金属1层之间失效。

第2节: 在漏极的电压/温度应力

其他压力条件都可以使用这个相同的方法。例如, GaN晶体管用户中的 一个普遍关注的问题, 是动态导通电阻。这是当器件暴露于漏极至源极 的高电压 (V_{DS}) 时。晶体管的阻抗会增加。测试这种情况的传统方法是 在最高额定温度 (通常为150°C), 施加最高额定DC V_{DS}电压。如果经过 一定时间 (通常为1000个小时) 后都没有器件发生失效的情况, 则认为 该产品合格。

导致导通电阻增加的机理是电子在沟道附近被捕获。随着被捕获的电荷 增多,会在开启状态下的二维电子气(2DEG)中耗尽电子,从而增加导通 阻抗。通过在最高温度下施加DC V_{DS},可被捕获的电子来自漏源漏电流 (I_{DSS})。为了加速捕获,可以增加器件的电压,高于其额定最大电压,如 图4所示第四代、100 V的EPC2212 eGaN FET器件。根据3参数Weibull 确定数据的准确性。

从图5可以看到,这些数据已转换为相对于电压和温度的失效时间曲 线。右图显示了在最大额定V_{DS},器件的1ppm失效时间(0.0001%)发 生在超过10年后。但是,不寻常的是,左图显示失效率对温度不是很敏 感,尽管在所有条件下器件的失效率都非常低,但相比在35°C或150°C 时,器件在90°C时的失效率更低。本文将稍后分析,原因是主要的失效 机理是热电子捕获。

图4: 在不同的电压下对EPC2212 eGaN FET器件施加直流偏置应力的威布尔 图。器件失效/故障定义为超出数据表所列出的限制。

图5: 图4的数据,以及在不同温度下获得的类似数据,被转换为在时间,温度和电压条件下,预测器件的失效率

第十一阶段产品可靠性测试

图6是EPC2212 eGaN场效应晶体管的放大图像,显示了1-2微米光学范围 内的热发射。这部分光谱中的发射与热电子一致,它们在器件中的位置与 器件在漏源偏压下的最高电场位置一致。

知道在该装置的该区域中的热电子是被俘获电子的来源。通过改进设计和 工艺可以更好地了解如何最小化动态导通电阻。通过了解热电子的一般行 为,可以概括它们在更大应力条件下的行为。

此外,通过提供更多的热电子可以加速捕获机制。为此,创建了图7所示的 电路,在最大额定V_{DS},推高饱和漏源电流I_{DSS}。换言之,不只是在高温下,利 用直流偏压产生的漏电流,作为能够被俘获的电子源,而且利用如图7所 示的开关电路,产生可以被俘获的、数量级以上的潜在电子。此电路类似于 JEDEC JEP173[15]规定的感应双脉冲测试。

图6:EPC2212 eGaN场效应晶体管的放大图像,显示了与热电 子发射一致的1-2微米光学范围内的热发射。在普通(可看到波 长的)显微镜图像上,加上SWIR热发射(红橙色部分)。

图8展示了第五代EPC2045 eGaN FET[16]的R_{DS (on)} 是如何在不同的电压 应力及温度下,随着时间而增加。在左边,这些器件在25℃下、从60 V到 120 V的电压下进行测试(EPC2045的V_{DS} (最大值)为100 V)。横轴是以秒 为单位测量的时间,右侧以10年结束。

右边的图表显示了在不同的温度、120 V的偏压时,R_{DS (on)}的革命性结果。与直观相反的结果表明,在较低的温度下,导通电阻增加得更快。这与 热载流子注入是一致的,因为热电子在较低温度下,可以传播得更远,因 此可以到达更容易被捕获的不同层。这表明,在最高电压和温度下对器件 进行测试的传统测试方法,可能并不足够确定到器件的可靠性。

现在也可以更好地理解图5中的结果。当器件在直流偏压下加热时,漏电流增大。然而,具有较短的传播距离的热载流子,却抵消了增加了的电子,从而使得本来随时间上升的R_{DS (on}),它从室温上升到90℃下降,但随后在更高的温度下,又再开始上升,这就是另一个与直觉相反的结果。

图8: 第五代EPC2045 eGaN FET在不同电压应力水平和温度下,随着时间而变化的R_{DS (on)}。左边是在25℃下、从60 V到120 V的电压,测试器件。右边的图 表显示了在不同温度下,120V电压下R_{DS (on)}取得的革命性结果

第3节:安全工作区域

安全工作区域 (SOA) 测试eGaNFET在给定的脉冲持续时间内,在高电流 (I_D) 和高电压 (V_{DS}) 应力下的影响。主要目的是验证场效应晶体管在数据 表的SOA的每个点 (I_D, V_{DS}) 都可以正常工作。它也可以通过反复测试器件工 作在安全区域条件之外,找出安全工作的裕度。

在测试器件的SOA期间,芯片内的高功耗会导致结温快速上升,并且形成高 热梯度。对于足够高的功率或脉冲持续时间,该器件会过热、损坏严重。这称 为过热故障。

对硅MOSFET进行SOA测试,观察到另一种称为二次击穿(或Spirito效应 [13])的故障机理。这种故障模式发生在高V_D和低I_D时,是由结温和阈值V_{TH} 之间的不稳定反馈引起的。随着脉冲期间结温上升、V_{TH}下降,这可以导致 脉冲电流上升。而上升电流导致温度更快速上升,从而形成正向反馈回路, 导致热失控和最终故障。我们研究的目的,是要确定eGaN FET会否由这种 Spirito效应导致失效。

EPC为eGaN FET设计并构建了定制的安全工作区测试系统。附录C中详细 描述了该系统。简而言之,该电路的工作原理跟曲线跟踪器相似。被测器件 (DUT)的栅极偏置设置在脉冲之前,用于调制最终脉冲电流。然后,在特 定持续脉冲时期,通过p沟道控制FET,将漏极电压脉冲到漏极。

对于直流脉冲或持续长时间的脉冲,FET的SOA能力,要看器件的散热器。 这对于评估SOA的真实能力,在技术方面构成极大的挑战,通常需要特殊的 水冷散热器。但是,对于短脉冲(低于1 ms),散热器不会影响SOA的性能。 这是因为在很短的时间范围内,在结点产生的热量,没有足够时间散到任何 外置散热器。相反地,所有电能转换提高了GaN膜和附近硅衬底的温度(热 容)。基于这些考虑,SOA测试在两个脉冲时期进行:1 ms和100 μs。

从图9看到200 V的EPC2034C的SOA数据,各个独立脉冲测试,以I_D和V_{DS}的 电压值组成的点来标示。这些点放在SOA的数据图表上。100 μs和1 ms脉冲 数据并列。绿点表示器件通过了100μs脉冲,而红点则表示元件失效。从低 V_{DS}到最大V_{DS}(200 V)范围、广泛的SOA区域内,没有器件失效(所有绿点) 。而所有失效器件(红点)都在SOA区域以外,如数据图表的绿色线所示。同 样地,在1 ms脉冲(紫色和红色三角形),所有器件的故障均发生在数据表 SOA区域之外。

图9: 这是EPC2034C的SOA图。受限于导通阻抗 (R_{DS (on}) 的虚线, 是基于在 150°C时, 数据表的R_{DS (on}) 的最大规格。 这图也同时展示出1 ms (紫色三角 形) 和100 μs (绿色点) 脉冲的测量值。 红色三角形 (1 ms) 或红色点 (100 μs) 代表故障。 请注意, 所有故障都发生在数据表SOA区域之外。

图10提供了另外三个器件的SOA数据:通过车规级AEC认证的EPC2212(这 是第4代100 V的车用器件)、EPC2045(第5代100 V器件)和EPC2014C(第 4代40 V器件)。所有受测的器件的安全工作区域内,没有发生故障,而所有 故障均发生在SOA限制范围以外,通常远远超出限制值。

图10: 这里展示了EPC2045、EPC2212和EPC2014C器件的SOA结果,也同 时展示出1 ms (紫色三角形)和100μs (绿色点)脉冲的测量值。红色三角 形 (1 ms)或红色点 (100 μs) 代表发生故障。请注意,所有器件的故障,都 发生在数据表SOA区域之外。 数据表的SOA图是使用包含所有相关层以及其导热性能和热容量的器件 热模型,通过有限元件分析生成的。根据瞬态仿真,SOA限值由一个简单 的标准确定:对于给定的脉冲持续时间,功耗必须确保结温在脉冲结束 前不超过150°C。此标准导致基于恒定功率的限制,在SOA图中由45°的 绿色线(100 μs)和紫色线(1 ms)表示。这种方法会生成一个数据表图 表,定义一个保守的安全工作区域,从我们的研究中大量测试数据可以 证明这一点。对于功率MOSFET,相同的恒定功率方法会导致在高电压范 围,高估了器件的性能,而由于不稳定的热量(Spirito效应),导致器件过 早发生故障。

但是,从故障的物理角度来看,从图10可以明显看出,在某些情况下,eGaN FET可以在标称安全工作区域之外,不会失效,但是在较高的漏至源偏置和较长的脉冲持续时间下,eGaN FET可以正常工作的裕度则会降低。为了更深入了解器件的失效机理,EPC计划在更高的V_{DS}(超出数据手册的最大值)和更长的脉冲持续时间下,进行反复测试器件的研究。这些研究将需要增加器件的散热器以获得有效的结果。测量技术将不断完善,而剖析失效器件,可找出内在的失效机理。

尽管仍然未知故障的物理机理,但这项研究的结果非常清楚:如果 eGaNFET工作在数据手册所载的SOA内,不会发生故障。

第4节:测试器件在短路时的稳固性

短路鲁棒性是指FET承受多少处于ON (导通) 状态时, 功率转换器中可 能发生的意外故障的能力。在这种情况下, 该器件将承受总线电压, 而电 流仅受晶体管固有的饱和电流和电路的寄生电阻的限制, 而寄生电阻随 不同的应用和发生故障的位置而变化。如果保护电路在短路时没有发挥 作用, 极端的功耗最终将导致FET发生过热故障。短路测试的目的, 是量 化元件在这些条件下不发生故障的"耐受时间"。典型的保护电路(例如 IGBT栅极驱动器的去饱和保护)可以在2-3µs内检测到过电流情况而作出 反应。因此, 如果eGaN FET能够承受没有钳位的短路情况约5µs或更长 的时间, 是较可取的。eGaN FET不会有像硅基IGBT具有闩锁或栅极控制 损耗[17]。

用于短路鲁棒性评估的两个主要测试电路为[17]:

- •硬开关故障(HSF):在施加漏极电压的情况下将栅极打开(和关闭)
- •负载故障(FUL):漏极电压打开、栅极打开

EPC在是次研究,利用两种故障模式,对器件进行测试后,发现耐受时间 没有显着差异。因此,在接下来的讨论中,重点关注FUL结果。然而,重 要的是,从HSF测试看到,eGaN FET不会任有像硅基IGBT具有闩锁或栅 极控制损耗[17]。这是在我们预期之内的,因为eGaN器件没有寄生双极 结构。在FET发生灾难性故障之前,可以通过切换低侧栅极来完全消除短 路,是保护电路设计的有用功能。附录D提供了测试方法的详细信息。

我们测试了两种极具代表性的eGaN FET:

(i) EPC2203 (80 V):第4代车规级 (AEC认证)器件

(ii) EPC2051 (100 V): 第五代器件

选择这两个器件,因为是产品系列中尺寸最小的器件。由于短路评估需要大电流,因此简化了测试。但是,根据简单的热微缩论点,预计其它产品系列的器件的耐受时间相同。EPC2203器件的结果,涵盖EPC2202, EPC2206, EPC2201和EPC2212。而EPC2051则涵盖EPC2045和EPC2053。 图11显示了EPC2203器件在不同的上升漏极电压时的FUL数据。在V_{GS}为 6 V (数据手册上的最大值)和10 µs漏极脉冲的情况下,直至V_{DS}为60 V 前,器件没有失效。在这些情况下,0.9 mm x 0.9 mm的裸片的功耗超过3 kW。在较高的V_{DS}下,可以看到电流在脉冲期间会随时间衰减。这是器件 内部结温升高的结果,并不表示任何永久性的器件损坏。

图11: EPC2203在各个上升的漏极电压时的FUL测试波形图。漏极脉冲为 10 μs, V_{GS}为6 V。在该脉宽时,器件没有发生故障。 (最上图) V_{DS}与时间 的关系。直接在器件的端子感测开尔文V_{DS} (Kelvin drain-source)。 (中间图) I_{DS}与时间的关系。请注意,由于自发热,I_{DS}随着时间而降低。 (底图) 此测试序列的结果的输出曲线。报告漏电流为脉冲期间的平均电 流。漏电流在饱和区域下降,因为器件在较高的V_{DS}时的热量增加。

7

第十一阶段产品可靠性测试

当使用更长的脉冲持续时间(25 μs),这些器件最终会因热过载而失效。代表性的波形如图12所示。当漏电流突然急剧上升时,这代表器件的失效时间。在这之后,器件将永久损坏。器件可承受时间,是从脉冲到失效时间的时期。

图12: 典型的EPC2203器件(左)和EPC2051器件(右)在V_{DS}为60 V、V_{GS}为6 V、 25 μs漏极脉冲时的FUL测试波形图。漏电流的突然上升标示灾难性热故障的发 生时间。

为了收集耐受时间的统计数据,使用此方法测试了八个器件的失效情况。表2总结了这个测试结果。EPC2203器件在5 V(推荐的栅极驱动 电压)和6 V(V_{GS}最大值)下进行测试,平均耐受时间分别为20 μs和 13 μs。请注意,由于较高的饱和电流,该器件工作在6 V电压下,耐受 的时间更短。与EPC2203器件工作在6V相比,EPC2051器件的失效时间 (9.3 μs)略低。这是可以预期的,因为第5代产品的缩放和电流密度更 高。但是,在所有情况下,耐受时间都足够长,足以使大多数短路保护电 路做出响应,并且防止器件失效。此外,不同器件的耐受时间的差别很 小。

表2的下排提供了相对于裸片尺寸的脉冲功率和能量。为了深入了解这些数值与失效时间的关系,模拟了与时间相关的传热,从而确定在短路脉 冲期间,上升了的结温ΔT_J。结果如图13所示。脉冲期间的高功率密度导 致GaN层和附近的硅衬底的热量急升。由于短脉冲和传热相对地较慢,

Short-circuit pulse	EPC2203	6 (Gen 4)	EPC2051 (Gen 5)		
$V_{DS} = 60 V$	$V_{GS} = 6 V$	$V_{GS} = 5 V$	$V_{GS} = 6 V$	$V_{GS} = 5 V$	
Mean TTF (µs)	13.1	20.0	9.33	21.87	
Std. dev. (μs)	0.78	0.37	0.21	2.95	
Min. TTF (μs)	12.1	19.6	9.08	18.53	
Avg pulse power (kW)	3.211	2.554	5.516	3.699	
Energy (mJ)	43.36	50.24	50.43	77.34	
Die area (mm²)	0.9025		1.105		
Avg power/area (kW/mm²)	3.558	2.830	4.99	3.35	
Energy/area (mJ/mm²)	48.05	55.67	45.64	69.99	

表2: EPC2203和EPC2051器件的短路耐受时间统计数值。在各情况下统 计8个器件。耐受时间非常接近平均值。从所有器件中的典型器件,取得平 均脉冲功率和能量的数值。

因此只有不厚的半导体(深度大约小于100微米)可以帮助吸收能量。 温度随着时间的平方根(热扩散的特性)而上升,并随脉冲功率呈线性 的增长。从图13可以看到,EPC2203器件工作在5V和6V和结温大约是 850°C时失效。EPC2051器件的情况相同,它在结温ΔTJ大约为1050°C时 失败。这些结果得出三个重要结论:

- 1. 对于给定的器件,失效时间与功耗平方 (P-2) 成反比。这适用于短路 及持续时间大约低于1 ms的SOA脉冲。
- 高功率脉冲导致的器件固有故障模式,直接与超过若干临界值的结温 有关。
- 3. 由于自由载流子的热失控,宽带隙eGaN器件可以承受的结温(高于 800°C),是硅器件无法实现的。

需要进一步分析,从而确定失效器件的确切机理。尽管如此,本研究提供的实验结果证明了eGaNFET的优越短路性能,让用户可以设计出具有足够安全裕度的系统和短路保护方案。

图13: 在V_{GS}是5 V和6 V时, EPC2051和EPC2203器件在短路脉冲期间, 模拟结 温上升与时间的关系。测出的故障时间, 用红色标记表示。请注意, EPC2203 器件大约在850°C的ΔT_J时, 发生灾难性故障, 而EPC2051在1050°C左右发生故 障。如方程式所示, 模拟ΔTJ和简单并与时间相关的平方根(热扩散)相配。P表 示每单位面积的平均功率, 而k = 6.73×10-5K/W s^{1/2}。

第十一阶段产品可靠性测试

第5节: 窄脉冲电流可靠性(激光雷达应用)

全自动驾驶汽车的激光雷达电路广泛采用eGaN FET,它的主要优势如下:

- 开关速度更快以实现较窄的脉冲和更高的距离分辨率
- 占板面积小,从而可实现高功率密度、低电感和紧凑型解决方案
- 更高的脉冲重复率,从而实现更高的效率

在激光雷达应用中, GaN器件的窄高脉冲电流大约为1至5纳秒, 驱动激 光二极管产生窄光脉冲。峰值电流通常明显比FET的脉冲电流额定值高 出50%。脉冲占空比通常较低,而且脉冲重复频率在10至100 kHz的范围 内。当没有发出脉冲时,该器件会处于断开状态及若干的漏极偏压下。

这种应力条件对于功率器件而言,有些不寻常,于是很难通过传统的直流可靠性测试,例如HTGB或HTRB等测试,预测到器件寿命。就算是特定的GaN测试,例如在第2节讨论过的硬开关可靠性测试,也未能有效地模拟激光雷达电路中的应力条件。从器件失效的物理观点来看,脉冲期间同时

出现的高电流和高电压,会担忧热载 流子效应可能导致器件内发生V_{TH}或 R_{DS (on})漂移。另外,重复的高电流脉 冲的累积效应,增加了电迁移的灵敏 性,从而导致焊点损坏。

这个市场正在不断发展,为了解决以上 提到的问题,EPC公司与各大激光雷达 客户携手合作,采用一种新颖的产品 测试方法。这项方法是继EPC通过车 规级AEC认证后的部分计划,包括对氮 化镓器件进行的一系列特定的应力测 试,这些测试超越了作为AEC-Q101认 证的部分要求--对MOSFET器件进行的 传统可靠性测试。

其概念是在实际的激光雷达电路中, 对器件施加应力,脉冲总数要支持到 器件在寿命完结前完成任务。车用激 光雷达器件的功能/可靠性任务因客 户而异。典型的车用器件要求具有15 年典型的车用器件要求具有15年工 作寿命、每天在100kHz脉冲重复频率

(PRF)下工作两小时。 这相当于大约4万亿个激光雷达脉冲。在最坏的情况下,器件要完成任务,可能需要10至12万亿个脉冲。采用测试大量器件直至它完成任务的方法,可直接证明eGaN器件完成激光雷达任务的器件寿命。请注意,采用这种直接测试方法就不用加速因子或激活能量,也不用从标准可靠性测试,以至从激光雷达独特应力条件,预计器件寿命了。

为了实现大量的脉冲,从而比典型激光雷达电路更高的PRF下,对器件连续不断施加应力。该测试电路是基于广受欢迎的EPC9126激光雷达开发板[18]。附录B提供实验详情。本研究对两个受欢迎的AEC认证器件进行测试: EPC2202 (80 V)和EPC2212 (100 V)。每个器件型测试了四个器件。在施加应力期间,监测每个器件的两个关键参数:(i)峰值脉冲电流和(ii)脉宽。这些参数对于激光雷达系统的距离和分辨率都是至关重要的。

图14显示了首4.2万亿个脉冲的结果。结果表明,在脉宽或高度上,都没有 看到到器件发生退化或漂移的问题。累积脉冲数量,就可以看到器件的 典型车用寿命。尽管这是对eGaN器件间接地监测到其稳固性,我们可以 看到,eGaN器件没有损坏而影响电路性能。

为了更深入了解eGaN器件参数的稳定性,测试系统每六个小时中断一次 施加的激光雷达应力,从而测量器件的阈值VTH和导通阻抗R_{DS (on)},之 后,迅速对器件继续施加激光雷达应力。图15的结果表明,这两个参数在 全程测试中都非常稳定,代表在激光雷达应力下,eGaN是非常可靠的器 件。

eGaN器件的短电流脉冲(激光雷达)测试表明,在典型的车用寿命内,它 是非常可靠的器件。截至本报告发布时,未有发现任何故障模式或参数 退化的现象。展望未来,EPC公司计划继续反复测试器件,找出任何可能 的损坏机理。此外,将对大量器件进行测试,以提高统计结果的可信度。

图14: 超过4.2万亿个激光雷达脉冲,展示了脉冲宽度(右下)和脉冲高度(右上)的长期稳定性。此图所展示的4个 EPC2202器件(红色)和4个EPC2212器件(蓝色)的数据表明,对于典型的车用器件寿命来说,从脉冲总数及主要参 数看到,这些器件是非常可靠的。

图15: 从激光雷达可靠性测试的R_{DS} (on)</sub>和V_{TH}值看到,氮化镓器件在长期工作的 条件下,非常稳定。对每个器件进行测试时,每六个小时就中断一次施加激光雷 达应力,从而测量出器件的参数。我们从不同栅极电压的测试点取得R_{DS} (on</sub>)值 来推断V_{TH}值。此图所展示的4个EPC2202器件(红色)和4个EPC2212器件(蓝 色)的数据表明,对于典型的车用器件寿命来说,从脉冲总数及主要参数看到, 这些器件是非常可靠的。

第十一阶段产品可靠性测试

第6节: 机械应力

6.1芯片剪切测试

芯片剪切测试的目的,是评估用于将eGaN器件安装到PCB的焊点的强度,这取决于平面力,对表面装贴在PCB上的器件施加平面力、从PCB剪切芯片。所有测试均遵循军用测试标准MIL-STD-883E、2019方法[19]。

图16显示了所选的4个eGaN FET的测试结果。每种产品测试十个器件。 测试的最小芯片为EPC2036/EPC2203[20-21],该芯片只有4个直径为 200 µm的焊球,芯片面积为12.6 x 10⁻⁴ in²。与预期一样,该产品的剪切 强度最弱,但是超过了MIL标准所规定的最小剪切力/强度要求,如图16 所示。受测的最大芯片是EPC2206[22],它使用焊盘网格阵列(LGA), 芯片的面积为216 x 10⁻⁴ in²。EPC2206超出了最小剪切力/强度要求的十 倍以上。我们还测试了另外两个不同尺寸的产品:EPC2212(100V、采用 LGA封装)[14]和EPC2034C [23](200 V、采用BGA封装)。它们都大大超 过了最小力的要求。

图16的结果表明,在最严格的条件下,所有采用晶圆级封装的EPC产品,在严峻环境的剪切应力测试中,都具有非常高的机械稳定性。

图16: 在测量剪切强度时, 对具有不同芯片尺寸及焊料配置的eGaN FET进行反 复测试。黑点表示结果。红星则显示根据MIL-STD-883E、2019方法, 推荐的最 低芯片剪切强度。

6.2背面压力测试

eGaN器件的机械稳定性的另一个测试,是它对背面压力的耐受度。对于需要芯片从背面散热的应用来说,这是一个重要的测试。确定在组装时的安全拾放力,也是很重要的。

EPC器件进行了高达400psi的背面压力测试,其中压力是通过施加的力除以芯片面积计算出来的。图17显示所使用的实验室压力测试仪。使用每分钟0.6毫米的加载速度,将压力直接施加到芯片的背部。在压力测试之前和之后,进行参数测试以确定器件会否失效。随后,将器件放置在60 V_{DS}、85°C、85%的相对湿度下,进行湿度偏压测试(H3TRB)达300小时。H3TRB可有效地确定在压力测试中,器件的机械性损坏(内部开裂)会否引致其它的潜在故障。

图17: 压力测量仪。以每分钟0.6毫米的恒定加载速度,把测试仪的头端放置到 器件的背面,直至测量仪感应到预设的力度为止。用表面安装方法,把DUT安装 在FR4测试试样上,该试样固定在测试台上。

EPC2212 (100 V、LGA封装)和EPC2034C (200 V、BGA封装)都通过了 测试及400 psi。表3所提供的测试结果表明,eGaN FET具有足够的余量 来应对通常在PCB装配厂使用的背面应力测试。尽管这些部件可以承受 400psi的应力,EPC建议最大的背面应力为50 psi或以下。

产品	样片 尺寸	芯片面积	背部 压力	施加力度	压力测试 后、于参 数测试 失效	300 小时 H3TRB 测试后 失效
EPC2212 (LGA)	16	2.1 x 1.6 mm	400 psi	9.3 N (2.1 lbs)	0/16	0/16
EPC2034C (BGA)	16	4.6 x 2.6 mm	400 psi	33.0 N (7.4 lbs)	0/16	0/16

表3: 对小型和相对大型的eGaN器件施加高背面压力进行测试,器件没有发生机械故障,并且在温度,湿度和偏压应力测试后,器件也没有失效

第7节:现场可靠性的最新报告

我们对器件进行的所有可靠性和反复测试,旨在创建不断完善的、基于 GaN-on-Si技术的产品系列。这些产品在各种宽泛的现场工作条件下, 都非常稳固。图18显示器件在超过三年时间、工作了1230亿小时后的 现场测试结果-大部分测试是在车辆或电信基站进行。在这段延长测试 时间内,只有3个器件发生故障。这3个器件的失效原因都是制造缺陷(外来原因所引致的缺陷)。我们已经解决并消除了这个缺陷。这个测试 结果是硅功率器件无法比拟的。

图18:器件通过了超过3年的现场应力测试和工作1230亿小时后,只有3个器件发生故障。这3个器件的失效原因都是制造缺陷(外来原因所引致的缺陷)。我们已经解决并消除了这个缺陷。

结论

eGaN[®]器件已经进行量产超过10多年,并且在实验室测试和客户的应用中,都展示出非常高的可靠性,例如全自动驾驶汽车的激光雷达、4G基站、汽车头灯和卫星等应用。EPC公司将继续对器件进行严谨的反复测试,从而在所有的应力条件下,分别了解到器件的固有失效机理和它的行为。从这些测试数据和知识,我们可以在功率转换应用中,构建出更稳固、性能更高而且成本更低的产品。

附录A: 面向激光雷达应用的氮化镓器件的可靠性测试系统

图A.1显示面向激光雷达应用的氮化镓器件可靠性测试系统的图片。将 器件组装在专用的激光雷达子板上,之后放置这些电路板到主板上,可 同时对多达8个器件进行应力测试。脉冲高度和宽度记录在示波器中, 方法是通过继电器开关、以循环方式切换每个器件。PC记录所得数据。

图A.1: 面向激光雷达应用的氮化镓器件的可靠性测试系统

如图A.2所示,子板上的测试电路以两种不同的模式操作:(i)激光雷达模式和(ii)参数模式

图A.2: 激光雷达测试电路: 左上图是激光雷达模式、左下图是参数模式、右图 是子板的图片 激光雷达模式电路是基于EPC公司的EPC9126激光雷达应用板。栅极 脉冲持续约25纳秒,使电容器C通过RL放电,从而模拟实际的激光雷达 电路中的激光二极管阻抗。 栅极脉冲后,器件关断,电容器C重新充电 至总线电压,并保持至下一个栅极脉冲。器件的工作条件如下:

- 总线电压:80V(未脉冲时的漏极电压)
- 电流脉冲高度:峰值大于50A
- · 脉冲宽度: 大约是2纳秒
- 脉冲重复频率: 500 kHz

请注意,预设这些条件是为了对eGaN FET施加最大的应力。典型的商 用激光雷达电路以较低的PRF操作,并且通常以较低的总线电压或电流 脉冲高度操作。

图A.3显示了典型的开关波形。热载流子在高电流及高电压下,可导致 V_{TH}漂移或增加动态R_{DS (on)}。但是,由于激光二极管的电感会抑制电流 上升,因此激光雷达中的开关轨迹比典型的硬开关转换器要轻。

测试系统的激光雷达模式以6个小时作为一个时段,连续运行。在每 个时段之间,如图A.2底图所示,电路被短暂切换到参数模式。在参 数模式下,每个器件的导通阻抗 $R_{DS (on)}$ 都是在从4 V到6 V的栅极电 压点测量的。这使系统可以直接在5 V_{GS}的情况下,恒常监测导通阻抗 $R_{DS (on)}$ 。此外,知道V_{GS}上的导通阻抗,可以得出器件的高电流V_{TH}。请 注意V_{TH}的定义与数据表的定义不同,后者在低漏极电流下测量V_{TH}。从 V_{TH}、 $R_{DS (on)}$ 和激光雷达的脉冲宽度和脉冲高度等数据可以洞悉器件 在长期的激光雷达应力下的失效机理。

图A.3: 典型的激光雷达模式的脉冲波形。

附录B:安全工作区域测试系统

图B.1显示了安全工作区域测试系统的电路原理图和时序信号。在测试 开始时,设置漏极 (V_D) 和栅极 (V_{GS}) 偏压,并留出稳定时间。设置栅极 电压 (通常在1-3 V范围内),从而在后续脉冲期间,获得所需的 I_D 。受测 器件 (DUT) 施加漏极脉冲,方法是使用44 m Ω p沟道FET,该个FET由 电容耦合栅极偏置网络触发。调整偏置网络以提供软转换,调整偏置网 络以提供软转换,从而防止DUT具高di/dt和电感过冲。在脉冲期间,漏 极电流 (I_D) 由一个小电流检测电阻器进行监测。对DUT的漏极和源极电 压进行开尔文检测,从而消除测试电路中寄生电阻的影响。安装栅极至 源极电容器在最接近DUT的位置,从而在高电流脉冲期间,保持V_{GS}标称值。示波器收到所有信号,之后进行分析。

由于eGaN FET的高增益带宽积,在脉冲期间,必须注意避免测试电路 出现振荡。特别是,当共源电感有坏影响时,必须使用专有的低电感电 流感测电阻器。

此外,安装一个小铁氧体磁珠、与靠近DUT的栅极串联,可以显着降低 振荡。

图B.1: 安全工作区域(SOA) 测试系统: 左图是SOA测试电 路的原理图、右图是设置偏压 和脉冲时序的波形图。

附录C: 短路测试系统

图C.1显示了短路(负载故障)测试系统的电路原理图和时序信号。在测试开始时,设置漏极(V_D)和栅极(V_{GS})偏压,并留出稳定的时间。受测器件(DUT)施加漏极脉冲,方法是使用4mΩn沟道FET,该FET由隔离型高侧栅极驱动器触发。在脉冲期间,漏极电流(I_D)由一个小电流检测

电阻器进行监测。对DUT的漏极和源极电压进行开尔文检测,从而消除测试电路中寄生电阻的影响。安装栅极至源极电容器在最接近DUT的位置,从而在高电流脉冲期间,保持V_{GS}标称值。示波器收到所有信号,之后进行分析。

参考文献:

- [1] Yanping Ma, "EPC GaN Transistor Application Readiness: Phase One Testing", http://epc-co.com/epc/Portals/0/epc/documents/product-training/EPC_ relreport_030510_finalfinal.pdf
- [2] Jean-Paul Clech, "Solder Reliability Solutions: A PC-Based Design-For-Reliability Tool," EPSI Inc., 1996
- [3] Yanping Ma, "EPC GaN Transistor Application Readiness: Phase Two Testing," http://epc-co.com/epc/Portals/0/epc/documents/product-training/EPC_Phase_ Two_Rel_Report.pdf
- [4] Yanping Ma, "EPC GaN Transistor Application Readiness: Phase Three Testing," http://epc-co.com/epc/Portals/0/epc/documents/product-training/EPC_Phase_ Three_Rel_Report.pdf
- [5] Yanping Ma, "EPC GaN Transistor Application Readiness: Phase Four Testing," http://epc-co.com/epc/Portals/0/epc/documents/product-training/EPC_Phase_ Four_Rel_Report.pdf
- [6] Yanping Ma, "EPC GaN Transistor Application Readiness: Phase Five Testing," http://epc-co.com/epc/Portals/0/epc/documents/product-training/EPC_Phase_ Five_Rel_Report.pdf
- [7] Robert Strittmatter, Chunhua Zhou, and Yanping Ma, "EPC eGaN FETs Reliability Testing: Phase Six Testing," http://epc-co.com/epc/DesignSupport/ eGaNFETReliability/Reliability/ReportPhase6.aspx
- [8] Chris Jakubiec, Robert Strittmatter, and Chunhua Zhou, "EPC eGaN FETs Reliability Testing: Phase Seven," http://epc-co.com/epc/DesignSupport/ eGaNFETReliability/ReliabilityReportPhase7.aspx
- [9] Chris Jakubiec, Rob Strittmatter, and Chunhua Zhou, "EPC eGaN FETs Reliability Testing: Phase Eight," http://epc-co.com/epc/DesignSupport/ eGaNFETReliability/ReliabilityReportPhase8.aspx
- [10] Chris Jakubiec, Rob Strittmatter, and Chunhua Zhou, "EPC eGaN FETs Reliability Testing: Phase Nine," http://epc-co.com/epc/DesignSupport/ eGaNFETReliability/ReliabilityReportPhase9.aspx
- [11] Alejandro Pozo, Shengke Zhang, and Rob Strittmatter, "EPC eGaN FETs Reliability Testing: Phase Ten," http://epc-co.com/epc/DesignSupport/ eGaNFETReliability/ReliabilityReportPhase10.aspx
- [12] A. Lidow, M. de Rooij, J. Strydom, D. Reusch, J. Glaser, GaN Transistors for Efficient Power Conversion, 3rd Edition, J. Wiley 2020.
- [13] Handbook for Robustness Validation of Semiconductor Devices in Automotive Applications, Third edition: May 2015, Editor: ZVEI Robustness Validation Working Group, Eds. Published by ZVEI – Zentralverband Elektrotechnik – und Elektronikindustrie e.V. Available at https://www.zvei.org/fileadmin/ user_upload/Presse_und_Medien/Publikationen/2015/mai/Handbook_for_Robustness_Validation_of_Semiconductor_Devices_in_Automotive_ Applications__3rd_edition_/Robustness-Validation-Semiconductor-2015.pdf
- [14] P. Spirito, G. Breglio, V. d'Alessandro, and N. Rinaldi, "Analytical Model For Thermal Instability Of Low Voltage Power MOS and S.O.A. In Pulse Operation," 14th International Symposium On Power Semiconductor Devices &ICS; Santa Fe, NM; 4–7 June 2002; pp. 269–272
- [15] Efficient Power Conversion Corporation, "EPC2212 Automotive 100 V (D-S) Enhancement Mode Power Transistor," EPC2212 data sheet. 2019 [Revised August 2019]. Available from: https://epc-co.com/epc/Portals/0/epc/documents/datasheets/epc2212_datasheet.pdf
- [16] Dynamic On-Resistance Test Method Guidelines for GaN HEMT Based Power Conversion Devices, Version 1.0, JEDEC Standard JEP173, 2019.
- [17] Efficient Power Conversion Corporation, "EPC2045 Enhancement Mode Power Transistor," EPC2045 data sheet. 2019 [Revised August 2019]. Available from: https://epc-co.com/epc/Portals/0/epc/documents/datasheets/epc2045_datasheet.pdf
- [18] S. Mishra, "Fault current limiting and protection circuit for power electronics used in a Modular Converter." Master's Thesis, University of Tennessee, 2008. https://trace.tennessee.edu/utk_gradthes/468
- [19] "Development Board EPC9126/EPC9126HC Quick Start Guide EPC2212/EPC2001C 100 V High Current Pulsed Laser Diode Driver," https://epc-co.com/epc/ Portals/0/epc/documents/guides/EPC9126xx_qsg.pdf
- [20] MIL-STD-883E (Method 2019), "DEPARTMENT OF DEFENSE TEST METHOD STANDARD: MECHANICAL TESTS- DIE SHEAR STRENGTH," May 3, 2018, https:// landandmaritimeapps.dla.mil/Downloads/MilSpec/Docs/MIL-STD-883/std883.pdf
- [21] EPC, "EPC2036 eGaN FET Datasheet," https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2036_datasheet.pdf
- [22] EPC, "EPC2203 eGaN FET Datasheet," https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2203_datasheet.pdf
- [23] EPC, "EPC2206 eGaN FET Datasheet," https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2206_datasheet.pdf
- [24] EPC, "EPC2034C eGaN FET Datasheet," https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2034C_datasheet.pdf