各位大俠知道,反激式多路輸出電源各組間的負(fù)載調(diào)整率比較差.即,在各組功率不平恒時(shí),各組帶載時(shí)電壓波動(dòng)很大,電壓穩(wěn)定性不好.
請(qǐng)問各位有沒有好的方法解決此問題?
關(guān)于反激式多路輸出電源平恒問題的探討!!!
全部回復(fù)(31)
正序查看
倒序查看
@zhlun
怎么沒人說話呀,自己來頂!
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.
理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.
很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢?
原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V 3匝,漏感1uH,12V 7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的; 2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.
改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V 5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.
另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.
很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢?
原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V 3匝,漏感1uH,12V 7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的; 2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.
改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V 5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.
另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
有道理,謝謝!
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
全搬來了,這是一段好東西.
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
很詳細(xì),非常感謝!不過,在最后所說的那段:將兩個(gè)二極管疊加,這樣如果在兩組同為大電流的情況下,二極管的損耗是相當(dāng)可觀的,這樣對(duì)二極管的要求就高出很多,而且對(duì)整機(jī)功耗也增加很多,效率下降.
個(gè)人拙見,望更多高人來討論.
個(gè)人拙見,望更多高人來討論.
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
這種方法是犧牲效率的,犧牲應(yīng)力,而且不一定可行的!!
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
應(yīng)該不能只要漏感匹配就可以了吧?那也要穩(wěn)壓電路吧,
有實(shí)際試過嗎?
效果怎么樣?
現(xiàn)在有個(gè)電源:
輸入:85-265
輸出:5V/0.7A;12V/0.1A;-12V/0.1A
調(diào)整率要求:任何輸入電壓,輸出負(fù)載條件下各輸出電壓都是2%.
這種方法可以做到嗎?
有實(shí)際試過嗎?
效果怎么樣?
現(xiàn)在有個(gè)電源:
輸入:85-265
輸出:5V/0.7A;12V/0.1A;-12V/0.1A
調(diào)整率要求:任何輸入電壓,輸出負(fù)載條件下各輸出電壓都是2%.
這種方法可以做到嗎?
0
回復(fù)
@zcmfly
反激電源多路輸出交叉調(diào)整率的產(chǎn)生原因和改進(jìn)方法.理論上反激電源比正激電源更使用于多路輸出,但實(shí)際上反擊電源的多路輸出交叉調(diào)整率比正激電源更難做,這主要是正激后面加了個(gè)偶合電感,而反激的漏感不是零.很多人做反激電源時(shí)都遇到這個(gè)問題,一路輸出穩(wěn)定性非常好,但多路輸出時(shí)沒有直接取反饋的路的電壓會(huì)隨其他路的負(fù)載變化而劇烈變化,這是什么原因呢? 原來,在MOS關(guān)斷,次級(jí)輸出時(shí)能量的分配是有規(guī)律的,它是按漏感的大小來分配,具體是按匝比的平方來分配(這個(gè)可以證明,把其他路等效到一路就可得出結(jié)果)如:5V3匝,漏感1uH,12V7匝,如果漏感為(7/3)(平方)*1=5.4uH,則兩路輸出的電流變化率是一樣的,沒有交叉調(diào)整率的問題,但如果漏感不匹配時(shí),就會(huì)有很多方面影響到輸出調(diào)整率:1.次級(jí)漏感,這是明顯的;2,輸入電壓,如果設(shè)計(jì)不是很連續(xù),則在高壓時(shí)進(jìn)入DCM狀態(tài),DCM時(shí)由于電流沒有后面的平臺(tái),漏感影響更顯著.改進(jìn)方法:1,變壓器工藝,讓功率比較大,電壓比較低的繞組最靠近初級(jí),其漏感最小,電壓比較高,功率比較小的遠(yuǎn)離初級(jí),這樣就增加了其漏感.2,電路方法,電壓輸出較高的繞組在整流管前面加一個(gè)小的磁珠或一個(gè)小的電感,人為增加其漏感,這樣電流的變化率就接近于主輸出,電壓就穩(wěn)定.3,電壓相近的輸出,如:3.3V5V,按我們的解釋其漏感應(yīng)該差別很小,這時(shí)就要把這兩個(gè)繞組繞在同一層里面,甚至有時(shí)候5V要借用3.3的繞組,也就是所謂的堆疊繞法,來保證其漏感比.另外有時(shí)候電壓不平衡是由于算出的匝數(shù)不為整數(shù)造成的,如半匝,當(dāng)然半匝是有辦法繞的,但半匝的繞法也是很危險(xiǎn)的(可參考其他資料),這是我們可以通過二極管的壓降來調(diào)整,如12V用7匝,5V用3匝,如果發(fā)現(xiàn)12V偏高,則12V借用5V的3匝,但剩下的4匝的起點(diǎn)從5V輸出的整流管后面連接,則12V的整流管的壓降為兩組輸出整流管的壓降和,如:0.5(5V)+0.7(12V)=1.2V,另外12V輸出負(fù)載變化時(shí),其電流必然引起5V整流管的壓降變化,也就是5V輸出變化,而5V的變化會(huì)通過反饋調(diào)整,這樣也間接控制了12V. CMG說的,望笑訥,嘿嘿
經(jīng)典,經(jīng)典,多謝,頂起!
0
回復(fù)