0 引 言 信息時(shí)代離不開電子設(shè)備,隨著電子技術(shù)的高速發(fā)展,電子設(shè)備的種類與日俱增,與人們的工作、生活的關(guān)系也日益密切。任何電子設(shè)備又都離不開可靠的供電電源,它們對(duì)電源供電質(zhì)量的要求也越來越高。 目前,開關(guān)電源以具有小型、輕量和高效的特點(diǎn)而被廣泛應(yīng)用于電子設(shè)備中,是當(dāng)今電子信息產(chǎn)業(yè)飛速發(fā)展不可缺少的一種電源。與之相應(yīng),在微電子技術(shù)發(fā)展的帶動(dòng)下,DSP芯片的發(fā)展日新月異,因此基于DSP芯片的開關(guān)電源擁有著廣闊的前景,也是開關(guān)電源今后的發(fā)展趨勢(shì)。 1 電源的總體方案 本文所設(shè)計(jì)的開關(guān)電源的基本組成原理框圖如圖1所示,主要由功率主電路、DSP控制回路以及其它輔助電路組成。 開關(guān)電源的主要優(yōu)點(diǎn)在“高頻”上。通常濾波電感、電容和變壓器在電源裝置的體積和重量中占很大比例。從“電路”和“電機(jī)學(xué)”的有關(guān)知識(shí)可知,提高開關(guān)頻率可以減小濾波器的參數(shù),并使變壓器小型化,從而有效地降低電源裝置的體積和重量。以帶有鐵芯的變壓器為例,分析如下: 圖1 系統(tǒng)組成框圖 設(shè)鐵芯中的磁通按正弦規(guī)律變化,即φ= φMsinωt,則:從公式可以看出電源頻率越高,鐵芯截面積可以設(shè)計(jì)得越小,如果能把頻率從50 Hz提高到50 kHz,即提高了一千倍,則變壓器所需截面積可以縮小一千倍,這樣可以大大減小電源的體積。 綜合電源的體積、開關(guān)損耗以及系統(tǒng)抗干擾能力等多方面因素的考慮,本開關(guān)電源的開關(guān)頻率設(shè)定為30 kHZ。 2 系統(tǒng)的硬件設(shè)計(jì) 圖2 功率主電路原理圖 其基本工作原理是:交流輸入電壓經(jīng)EMI濾波、整流濾波后得到直流電壓,通過高頻逆變器將直流電壓變換成高頻交流電壓,再經(jīng)高頻變壓器隔離變換,輸出所需的高頻交流電壓,最后經(jīng)過輸出整流濾波電路,將高頻變壓器輸出的高頻交流電壓整流濾波后得到所需要的高質(zhì)量、高品質(zhì)的直流電壓。如圖3所示為交流輸入電壓到最后輸出所需直流電壓的各環(huán)節(jié)電壓波形變換流程。圖3 功軍主回路的電壓波形變化 本開關(guān)電源采用半橋式功率逆變電路。如圖2所示,輸入市電經(jīng)EMI濾波器濾波,大大減少了交流電源輸入的電磁干擾,并同時(shí)防止開關(guān)電源產(chǎn)生的諧波串?dāng)_到輸入電源端。再經(jīng)過橋式整流電路、濾波電路變成直流電壓加在P、N兩點(diǎn)問。P、N之間接人一個(gè)小容量、高耐壓的無感電容,起到高頻濾波的作用。半橋式功率變換電路與全橋式功率變換電路類似,只是其中兩個(gè)功率開關(guān)器件改由兩個(gè)容量相等的電容CA1和CA2代替。在實(shí)際應(yīng)用中為了提高電容的容量以及耐壓程度,CA1和CA2往往采用的是由多個(gè)等值電容并聯(lián)組成的電容組。C A1、CA2 的容量選值應(yīng)在電源體積和重量允許的條件下盡可能的大,以減小輸出電壓的紋波系數(shù)和低頻振蕩。CA1 和CA2 在這里同時(shí)起到了靜態(tài)時(shí)分壓的作用,使Ua =Uin/2。在本電源的設(shè)計(jì)中,采用IGBT來作為功率開關(guān)器件。它既具有MOSFET的通斷速度快、輸入阻抗高、驅(qū)動(dòng)電路簡(jiǎn)單及驅(qū)動(dòng)功率小等優(yōu)點(diǎn),又具有GTR的容量大和阻斷電壓高的優(yōu)點(diǎn)。 在IGBT的集射極間并接RC吸收網(wǎng)絡(luò),降低開關(guān)應(yīng)力,減小IGBT關(guān)斷產(chǎn)生的尖峰電壓;并聯(lián)二極管DQ實(shí)現(xiàn)續(xù)流的作用。二次整流采用全波整流電路,通過后續(xù)的LC濾波電路,消除高頻紋波,減小輸出直流電壓的低頻振蕩。LC濾波電路中的電容由多個(gè)高耐壓、大容量的電容并聯(lián)組成,以提高電源的可靠性,使輸出直流電壓更加平穩(wěn)。 2.2 控制電路 控制電路部分實(shí)際上是一個(gè)實(shí)時(shí)檢測(cè)和控制系統(tǒng),包括對(duì)開關(guān)電源輸出端電壓、電流和IGBT溫度的檢測(cè),對(duì)收集信息的分析和運(yùn)算處理,對(duì)電源工作參數(shù)的設(shè)置和顯示等。其控制過程主要是通過采集開關(guān)電源的相關(guān)參數(shù),送入DSP芯片進(jìn)行預(yù)定的分析和計(jì)算,得出相應(yīng)的控制數(shù)據(jù),通過改變輸出PWM波的占空比,送到逆變橋開關(guān)器件的控制端,從而控制輸出電壓和電流。 圖4 IGBT驅(qū)動(dòng)電路原理圖 由于TMS320LF2407A的驅(qū)動(dòng)功率較小,不能勝任驅(qū)動(dòng)開關(guān)管穩(wěn)定工作的要求,因此需要加上驅(qū)動(dòng)放大電路,以增大驅(qū)動(dòng)電流功率,提高電源系統(tǒng)的可靠性。如圖4所示,采用兩片TCA422組成驅(qū)動(dòng)放大電路。TC4421/4422是Microchip公司生產(chǎn)的9A高速M(fèi)OsFET/IGBT驅(qū)動(dòng)器,其中TC4421是反向輸出,TC4422是同向輸出,輸出級(jí)均為圖騰柱結(jié)構(gòu)。 TC4421/4422具有以下特點(diǎn): ①輸出峰值電流大:9 A; 因此,整個(gè)控制電路需要提供15 V、5 V和3.3 V三種制式的電壓。設(shè)計(jì)中選用深圳安時(shí)捷公司的HAw 5-220524 AC/DC模塊將220 V、50 Hz的交流電轉(zhuǎn)換成24 V直流電,然后采用三端穩(wěn)壓器7815和7805獲得15 V和5 V的電壓。TMS320LF2407A所需的3.3 V由5 V通過TPS7333QD電壓芯片得到。 (4)采樣電路 電壓采樣電路由三端穩(wěn)壓器TL431和光電耦合器PC817之問的配合來構(gòu)成。電路設(shè)計(jì)如圖5所示,TL431與PC817一次側(cè)的LED串聯(lián),TL431陰極流過的電流就是LED的電流。輸出電壓Ud經(jīng)分壓網(wǎng)絡(luò)后到參考電壓UR與TL431中的2.5 V基準(zhǔn)電壓Uref進(jìn)行比較,在陰極上形成誤差電壓,使LED的工作電流 If發(fā)生變化,再通過光耦將變化的電流信號(hào)轉(zhuǎn)換為電壓信號(hào)送人LF2407A的ADCIN00引腳。 圖5 電壓采樣電路原理圖 由于TMS320LF2407A的工作電壓為3.3 V,因此輸入DSP的模擬信號(hào)也不能超過3.3 V。為防止輸入信號(hào)電壓過高造成A/D輸入通道的硬件損壞,我們對(duì)每一路A/D通道設(shè)計(jì)了保護(hù)電路,如圖5所示,Cu2,CU3 起濾波作用,可以將系統(tǒng)不需要的高頻和低頻噪聲濾除掉,提高系統(tǒng)信號(hào)處理的精度和穩(wěn)定性。另外,采用穩(wěn)壓管限制輸入電壓幅值,同時(shí)輸入電壓通過二極管與3.3 V電源相連,以吸收瞬間的電壓尖峰。 當(dāng)電壓超過3.3 V時(shí),二極管導(dǎo)通,電壓尖峰的能量被與電源并聯(lián)的眾多濾波電容和去耦電容吸收。并聯(lián)電阻Ru4的目的是給TL431提供偏置電流,保證TL431至少有1 mA的電流流過。Cu1 和RU3作為反饋網(wǎng)絡(luò)的補(bǔ)償元件,用以優(yōu)化系統(tǒng)的頻率特性。 電流采樣的原理與電壓采樣類似,只是在電路中要通過電流傳感器將電流信號(hào)轉(zhuǎn)換為電壓信號(hào),然后再進(jìn)行采集。 (5)保護(hù)電路 為保證系統(tǒng)中功率轉(zhuǎn)換電路及逆變電路能安全可靠工作,TMs320LF2407A提供了 ![]() 各種故障信號(hào)經(jīng)或門CD4075B綜合后,經(jīng)光電隔離、反相及電平轉(zhuǎn)換后輸入到 圖7 軟件模塊流程圖 TMS320LF2407A芯片內(nèi)部集成了10位精度的帶內(nèi)置采樣/保持的模數(shù)轉(zhuǎn)換模塊(ADC)。根據(jù)系統(tǒng)的技術(shù)要求,10位ADC的精度可以滿足電壓的分辨率、電流的分辨率的控制要求,因此本設(shè)計(jì)直接利用DSP芯片內(nèi)部集成的ADC就可滿足控制精度。另外,該10位ADC是高速ADC,最小轉(zhuǎn)換時(shí)間可達(dá)到500 ns,也滿足控制對(duì)采樣周期要求。 ADC采樣模塊首先對(duì)ADC進(jìn)行初始化,確定ADC通道的級(jí)聯(lián)方式,采樣時(shí)間窗口預(yù)定標(biāo),轉(zhuǎn)換時(shí)鐘預(yù)定標(biāo)等。然后啟動(dòng)ADC采樣,定義三個(gè)數(shù)組依次存放電壓、電流和溫度的采樣結(jié)果,對(duì)每一個(gè)信號(hào)采樣8次,經(jīng)過移位還原后存儲(chǔ)到相應(yīng)的數(shù)組中,共得到3組數(shù)據(jù)。如果預(yù)定的ADC中斷發(fā)生,則轉(zhuǎn)人中斷服務(wù)程序,對(duì)采樣的數(shù)據(jù)進(jìn)行分析、處理和傳輸。以電壓采樣為例,其具體的流程圖如圖8所示。 圖8 電壓采樣程序流程圖 開關(guān)電源在進(jìn)入穩(wěn)態(tài)后,偏差是很小的。如果偏差e在一個(gè)很小的范圍內(nèi)波動(dòng),控制器對(duì)這樣微小的偏差計(jì)算后,將會(huì)輸出一個(gè)微小的控制量,使輸出的控制值在一個(gè)很小的范圍內(nèi),不斷改變自己的方向,頻繁動(dòng)作,發(fā)生振蕩,這既影響輸出控制器,也對(duì)負(fù)載不利。 ADC采樣模塊首先對(duì)ADC進(jìn)行初始化,確定ADC通道的級(jí)聯(lián)方式,采樣時(shí)間窗口預(yù)定標(biāo),轉(zhuǎn)換時(shí)鐘預(yù)定標(biāo)等。然后啟動(dòng)ADC采樣,定義三個(gè)數(shù)組依次存放電壓、電流和溫度的采樣結(jié)果,對(duì)每一個(gè)信號(hào)采樣8次,經(jīng)過移位還原后存儲(chǔ)到相應(yīng)的數(shù)組中,共得到3組數(shù)據(jù)。如果預(yù)定的ADC中斷發(fā)生,則轉(zhuǎn)人中斷服務(wù)程序,對(duì)采樣的數(shù)據(jù)進(jìn)行分析、處理和傳輸。以電壓采樣為例,其具體的流程圖如圖8所示。 圖8 電壓采樣程序流程圖 開關(guān)電源在進(jìn)入穩(wěn)態(tài)后,偏差是很小的。如果偏差e在一個(gè)很小的范圍內(nèi)波動(dòng),控制器對(duì)這樣微小的偏差計(jì)算后,將會(huì)輸出一個(gè)微小的控制量,使輸出的控制值在一個(gè)很小的范圍內(nèi),不斷改變自己的方向,頻繁動(dòng)作,發(fā)生振蕩,這既影響輸出控制器,也對(duì)負(fù)載不利。 為了避免控制動(dòng)作過于頻繁,消除由于頻繁動(dòng)作所引起的系統(tǒng)振蕩,在PID算法的設(shè)計(jì)中設(shè)定了一個(gè)輸出允許帶eo。當(dāng)采集到的偏差|en|≤eo時(shí),不改變控制量,使充電過程能夠穩(wěn)定地進(jìn)行;只有當(dāng)|en| >eo 時(shí)才對(duì)輸出控制量進(jìn)行調(diào)節(jié)。PID控制模塊的程序流程如圖9所示: 圖9 PID運(yùn)算程序流程圖 圖10所示為帶死區(qū)PWM波的生成原理 3.5 鍵盤掃描及LCD顯示模塊 圖11 樣機(jī)額定負(fù)載時(shí)的輸出波形 |
基于DSP的大功率開關(guān)電源的設(shè)計(jì)方案
全部回復(fù)(11)
正序查看
倒序查看
能改變中國(guó),實(shí)訓(xùn)改變命運(yùn)!信盈達(dá)專注于研發(fā)工程師技能培訓(xùn),8年口碑,教學(xué)以實(shí)戰(zhàn)為主,注重教學(xué)質(zhì)量,關(guān)注學(xué)員就業(yè)率,高薪就業(yè)率高達(dá)90%以上。信盈達(dá)自主研發(fā)業(yè)內(nèi)領(lǐng)先物聯(lián)網(wǎng)實(shí)驗(yàn)平臺(tái),同時(shí)是教育部定點(diǎn)嵌入式培訓(xùn)實(shí)戰(zhàn)基地,多年來獲得企業(yè)、學(xué)員的良好口碑,在卓越的品質(zhì)背后,是信盈達(dá)“讓中國(guó)智造引領(lǐng)世界!”的企業(yè)使命。
0
回復(fù)
@year聽
能改變中國(guó),實(shí)訓(xùn)改變命運(yùn)!信盈達(dá)專注于研發(fā)工程師技能培訓(xùn),8年口碑,教學(xué)以實(shí)戰(zhàn)為主,注重教學(xué)質(zhì)量,關(guān)注學(xué)員就業(yè)率,高薪就業(yè)率高達(dá)90%以上。信盈達(dá)自主研發(fā)業(yè)內(nèi)領(lǐng)先物聯(lián)網(wǎng)實(shí)驗(yàn)平臺(tái),同時(shí)是教育部定點(diǎn)嵌入式培訓(xùn)實(shí)戰(zhàn)基地,多年來獲得企業(yè)、學(xué)員的良好口碑,在卓越的品質(zhì)背后,是信盈達(dá)“讓中國(guó)智造引領(lǐng)世界!”的企業(yè)使命。
太好了
0
回復(fù)