1. 工作原理
輸入交流電壓和電感電流,以及PFC母線電壓經(jīng)過采樣和濾波由DSP的ADC口采樣到DSP內(nèi),然后通過一個電壓反饋補償器Gcv(S),輸出電壓環(huán)的反饋信號Vc,然后通過一個乘法器單元將電壓調(diào)節(jié)器的輸出Vc與輸入電壓的全波整流波形相乘,得到整流橋后電流的指令值Iref。正是該乘法器保證了輸入電流與輸入電壓同相且波形相同,使電源輸入端的功率功率因數(shù)為1,它是實現(xiàn)功率因數(shù)校正功能的關(guān)鍵。在圖1所示的電路中,PFC參考電流合成器還包含了一個輸入電壓全波整流值的平方電路和除法器,主要是為了提高控制系統(tǒng)對輸入電壓變化的動態(tài)響應(yīng)速度,它對于寬輸入電壓范圍和輸入電壓波動較大的應(yīng)用場合更為必要,我們將上面的電路框圖用傳遞函數(shù)框圖表示:
圖32 PFC傳遞函數(shù)框圖
其中:Gcv(s)為電壓環(huán)的補償函數(shù),Gci(s)為電流環(huán)補償函數(shù),Vm為載波幅值,Gigd(s)為電感電流對占空比D的函數(shù),ZL(s)為電感電流到輸出電壓的阻抗,Hi(s)為電流環(huán)采樣函數(shù),Hv(s)為電壓環(huán)采樣函數(shù)。
在三相PFC的數(shù)字控制當(dāng)中,可以采用Microchip雙核dsPIC33CH系列,由于其內(nèi)部具備雙核CPU,所以整個控制我們分配在兩個內(nèi)核中,主核Master完成電壓環(huán)以及保護(hù)和快速采樣濾波計算等環(huán)節(jié),從核Slave完成電流環(huán)和發(fā)波的功能。
雙核示意圖如下:
圖33dsPIC雙核框圖
雙核系列的dsPIC具有如下特點:
- 主核和從核分別獨立工作;
- 在應(yīng)用開發(fā)階段可以分別編程和調(diào)試;
- 主核和從核都有它們自己的中斷控制、時鐘發(fā)生器、端口邏輯和外設(shè)資源;
- 主核最大工作90MIPS,從核最大工作100MIPS。
2. PFC電流環(huán)
圖34 PFC電流環(huán)框圖
在Vienna電路中,兩組PFC母線電容對輸入等效為以中點為基準(zhǔn)的兩個并聯(lián)電容組,三相二極管電流對其充電,對輸出而言其又等效為兩個串連的電容,對負(fù)載供電,所以每相流入PFC電容電流和流出PFC電容電流的關(guān)系為2/3。
故三相Vienna拓?fù)涞闹麟娐穫鬟f函數(shù)為:
L_fulload為滿載情況下PFC電感值,RL為電感串聯(lián)電阻。
我們知道了主電路的傳遞函數(shù)后,其他比如AD增益(包括采樣、保持、轉(zhuǎn)換)、硬件采樣電路、Fm等傳遞函數(shù)都可以表達(dá)出來了。這樣除了補償器之外的開環(huán)傳遞函數(shù)都清楚了,計算或者仿真出除補償器的Bode圖,根據(jù)開環(huán)傳遞函數(shù)的Bode圖,設(shè)計出合理的補償器。
在數(shù)字電源控制中,一般采用的補償器有PI控制器、SZSP控制器、2P2Z控制器、3P3Z控制等。在開關(guān)頻率以下,電流環(huán)開環(huán)傳遞函數(shù)為一個單極點系統(tǒng),可以將補償函數(shù)設(shè)計為一個PI控制系統(tǒng)。
由于PFC電感在不同的直流偏置下感量變化非常明顯,nFeSi材質(zhì)在正弦電流過零點和峰值附近相差近3倍,為了能提高過零點的低頻增益和帶寬,同時保證峰值附近的穩(wěn)定,我們需要實時的調(diào)節(jié)電流環(huán)的相關(guān)參數(shù),這樣能時時的改善帶寬和增益。
3. 電壓環(huán)
圖35 PFC電壓環(huán)
PFC電流內(nèi)環(huán)和功率級形成一個電流源,因此PFC電壓環(huán)的被控對象在低頻可以等效為驅(qū)動電容的電流源,在100Hz頻率附近,電壓環(huán)開環(huán)傳遞函數(shù)為一個單積點系統(tǒng)。PFC電壓環(huán)在確保當(dāng)負(fù)載變化時輸出電壓穩(wěn)定的同時,帶寬應(yīng)該足夠低,從而使頻率大于100Hz時的環(huán)路增益足夠低,以減小PFC輸出電容上的100Hz電壓紋波對PFC輸入電流的調(diào)制作用,否則該調(diào)制作用會引起輸入電流的嚴(yán)重畸變,當(dāng)然過低的電壓環(huán)帶寬回導(dǎo)致電壓動態(tài)速度過慢,在THD設(shè)計滿足要求的情況下,可以再調(diào)節(jié)帶寬。
以上是針對穩(wěn)態(tài)的電壓環(huán)設(shè)計,如果輸入或者輸出在進(jìn)行動態(tài)跳變,為了保證電路的可靠性,可以加入快環(huán)。也即在動態(tài)時,為了加快環(huán)路響應(yīng),滿足動態(tài)的要求,采用另外一組環(huán)路參數(shù),同時去除軟件濾波。當(dāng)總母線電壓采樣大于或者小于當(dāng)前總母線電壓給定的一定值時,進(jìn)入快環(huán);當(dāng)總母線電壓采樣不再大于或者小于當(dāng)前總母線電壓給定另一值時,退出快環(huán)。當(dāng)然,由于母線電容的ESR容易受環(huán)境溫度的影響,所以當(dāng)環(huán)境溫度過低時,母線電容的ESR增大,電壓環(huán)調(diào)節(jié)過快,會導(dǎo)致母線電壓過壓。
所以電壓環(huán)的設(shè)計不僅要考慮到穩(wěn)態(tài)的低帶寬,還要考慮動態(tài)響應(yīng)以及受環(huán)境溫度的影響。
4. 母線電壓偏壓環(huán)
PFC電路有正負(fù)母線輸出,所以要控制正負(fù)輸出平衡:
把&疊加到電壓波形給定中去,這樣可以調(diào)節(jié)母線平衡(見均壓原理分析)。
母線電壓偏壓環(huán)是純比例環(huán)節(jié),即有靜差調(diào)節(jié),所以即使最終調(diào)節(jié)穩(wěn)定的情況下,母線還是會存在一定的差異,如果K越大,&輸出就越大,調(diào)節(jié)能力就越強(qiáng),平衡度就越好,但是注入到輸入電流的諧波也就越大,影響THD指標(biāo)。所以需要在THD和母線平衡之間做出平衡。
為了消除正、負(fù)母線之間的靜差,可以采用PI環(huán)節(jié)來代替純比例環(huán)節(jié),但是積分環(huán)節(jié)本身存在退飽和的問題,對于Vp, Vn 不停變化的系統(tǒng),調(diào)壓是通過改變小矢量的持續(xù)時間,積分的響應(yīng)速度慢,可能反而對小矢量超調(diào)或欠調(diào),導(dǎo)致正、負(fù)母線電壓一直處于偏壓的狀態(tài)。所以采用純比例環(huán)節(jié)進(jìn)行正、負(fù)母線電壓的調(diào)節(jié)可以保證時時性。
由于母線偏壓環(huán)的調(diào)節(jié),會對THD造成影響,所以要根據(jù)母線偏壓的程序選擇比例系數(shù)和輸出δ的最大范圍,避免過分調(diào)節(jié)。
5. 補償器的數(shù)字化
數(shù)字補償器設(shè)計流程如下:
- 首先選擇一個合適的已知原型濾波器傳遞函數(shù)(要選擇合適的零極點);
- 將該原型濾波器的s域傳遞函數(shù)映射到z域中;
- 將z域轉(zhuǎn)換為時域內(nèi)的線性差分方程。
從s域到z域的變換,我們一般采用雙線性變換,又稱Tustin變換和梯形變換。它將s域中的模擬傳遞函數(shù)轉(zhuǎn)換為z域中的等效數(shù)字傳遞函數(shù),它只是表示的一個近似值,相對于采樣頻率的交叉頻率越低,近似值就越可靠。
以3P3Z控制器設(shè)計為例,在s域的表達(dá)式為:
將z域轉(zhuǎn)換為線性差分方程:
在MCU里面執(zhí)行的大致過程如圖36所示:
圖36數(shù)字Ⅲ型控制器實現(xiàn)方式
關(guān)于s域到z域變換的方法,請參考《基于MCHP 16bit dsPIC33C 全數(shù)字控制同步Buck入門》專題詳細(xì)介紹。