本系列文章的第 5 和第 6 部分介紹有助于抑制非隔離 DC-DC 穩(wěn)壓器電路傳導(dǎo)和輻射電磁干擾 (EMI) 的實(shí)用指南和示例。當(dāng)然,如果不考慮電隔離設(shè)計(jì),DC-DC 電源 EMI 的任何處理方式都不全面,因?yàn)樵谶@些電路中,電源變壓器的 EMI 性能對(duì)于整體 EMI 性能至關(guān)重要。
特別是,了解變壓器繞組間電容對(duì)共模 (CM) 發(fā)射噪聲的影響尤其重要。共模噪聲主要是由變壓器繞組間寄生電容以及電源開(kāi)關(guān)與底盤(pán)/接地端之間的寄生電容內(nèi)的位移電流所導(dǎo)致的。DC-DC 反激式轉(zhuǎn)換器已被廣泛用作隔離電源,本文專(zhuān)門(mén)對(duì)其 CM 噪聲進(jìn)行了分析。
反激式拓?fù)?/strong>
DC-DC 反激式電路在工業(yè)與汽車(chē)市場(chǎng)領(lǐng)域應(yīng)用廣泛,由于可輕松配置成單個(gè)或多個(gè)輸出,尤為適合低成本隔離式偏置軌。需要進(jìn)行隔離的應(yīng)用包括用于單相及三相電機(jī)驅(qū)動(dòng)器的高壓 MOSFET 柵極驅(qū)動(dòng)器,以及工廠自動(dòng)化和過(guò)程控制所用的回路供電傳感器和可編程邏輯控制器。
反激式實(shí)現(xiàn)方案如圖 1 中的原理圖所示,該實(shí)現(xiàn)方案提供了一種結(jié)構(gòu)簡(jiǎn)單、元件器數(shù)量少的可靠解決方案。如果可以采用初級(jí)側(cè)穩(wěn)壓 (PSR) 技術(shù),則反饋穩(wěn)壓無(wú)需使用光耦合器及其相關(guān)電路,從而能夠進(jìn)一步減少元器件數(shù)量,簡(jiǎn)化變壓器設(shè)計(jì)。具有功能型隔離的變壓器可直接實(shí)現(xiàn)電路接地隔離,而增強(qiáng)型隔離則用于安全要求極高的高壓應(yīng)用。
圖 1:采用典型的 24V 電源或 12V/48V 輸入(分別用于工業(yè)或汽車(chē)電池應(yīng)用)的 DC-DC 反激式穩(wěn)壓器。圖中已明確標(biāo)出具有磁化作用的反激式變壓器、漏電感以及電路寄生電容
反激式開(kāi)關(guān)波形特性
圖 2 所示為以非連續(xù)模式 (DCM) 和邊界導(dǎo)通模式 (BCM) 運(yùn)行的反激式功率級(jí)(如圖 1 所示)的初級(jí)側(cè) MOSFET 和次級(jí)側(cè)整流二極管電壓波形。圖 2a 突出顯示了 DCM 模式下的開(kāi)關(guān)波形,其中初級(jí)側(cè) MOSFET 在開(kāi)關(guān)節(jié)點(diǎn)諧振電壓擺幅的谷值附近導(dǎo)通。圖 2b 所示為 BCM 開(kāi)關(guān)波形,其中準(zhǔn)諧振 MOSFET 在從二次側(cè)繞組電流衰減到零起約半個(gè)諧振周期延遲之后導(dǎo)通。在 DCM 和 BCM 模式下,初級(jí)側(cè) MOSFET 均在零電流時(shí)導(dǎo)通。
圖 2:以 DCM (a) 和 BCM (b) 模式運(yùn)行的反激式轉(zhuǎn)換器初級(jí)側(cè) MOSFET 和次級(jí)側(cè)二極管電壓波形;跨越初級(jí)側(cè)繞組的 DZ 電路可鉗位與漏電感相關(guān)的電壓尖峰
除了開(kāi)關(guān)期間尖銳的電壓和電流邊沿,對(duì)于 EMI,電壓尖峰過(guò)沖以及隨后產(chǎn)生的振鈴特性尤為棘手。每次換向都會(huì)激勵(lì)開(kāi)關(guān)與二極管寄生電容和變壓器漏電感之間的阻尼電壓和電流振蕩。圖 2 所示為 MOSFET 關(guān)斷時(shí)的開(kāi)關(guān)節(jié)點(diǎn)電壓前沿尖峰和高頻振鈴。振鈴特性取決于與 MOSFET 輸出電容 (COSS) 諧振的初級(jí)側(cè)漏電感 (LLK-P) 以及變壓器初級(jí)側(cè)繞組電容 (CP)。類(lèi)似地,二極管電壓振鈴取決于與二極管結(jié)電容 (CD) 諧振的二次側(cè)漏電感 (LLK-SEC) 及二次側(cè)繞組電容 (CS)。過(guò)沖和振鈴都會(huì)產(chǎn)生較高的瞬態(tài)電壓 (dv/dt),因此任何至接地端的電容耦合都會(huì)導(dǎo)致產(chǎn)生感應(yīng)位移電流和 CM 噪聲。
以連續(xù)導(dǎo)通模式 (CCM) 工作時(shí),主開(kāi)關(guān)導(dǎo)通時(shí)反激二極管的反向恢復(fù)會(huì)產(chǎn)生額外的負(fù)面作用,使振鈴電壓升高并產(chǎn)生前沿尖峰電流,隨著恢復(fù)電流反映到初級(jí)側(cè)而流入初級(jí)側(cè) MOSFET。注意,反激式磁性元器件主要相當(dāng)于耦合電感,因?yàn)殡娏魍ǔ2粫?huì)同時(shí)流入初級(jí)側(cè)和次級(jí)側(cè)繞組。只有在開(kāi)關(guān)轉(zhuǎn)換期間才能出現(xiàn)真正的變壓器行為,此時(shí)電流同時(shí)流入初級(jí)側(cè)和次級(jí)側(cè)繞組(漏電感中的電流逐漸增大)。
隔離式 DC/DC 反激式轉(zhuǎn)換器中的 CM EMI
圖 3 所示為反激式穩(wěn)壓器的原理圖,其中連接有用于測(cè)量 EMI 的線路阻抗穩(wěn)定網(wǎng)絡(luò) (LISN)。紅色虛線表示穿過(guò)寄生電容到達(dá)接地端并返回到 LISN 的 CM 噪聲電流主要傳播路徑。電容 CZ 從初級(jí)側(cè)接地端 (PGND) 連接到次級(jí)側(cè)接地端 (SGND),將次級(jí)側(cè)的 CM 電流分流回初級(jí)側(cè),其作用是分流流經(jīng) CSE 并通過(guò) LISN 返回的 CM 電流。
圖 3:雙線 DC-DC 反激式穩(wěn)壓器(輸入端連接有 LISN)的 CM 噪聲電流傳播路徑。同時(shí),還顯示了初級(jí)側(cè)基準(zhǔn)的輔助輸出端
盡管初級(jí)側(cè) MOSFET 漏極端子的高轉(zhuǎn)換率電壓是主要的 CM 噪聲源,但變壓器及其寄生電容是傳導(dǎo) EMI 從初級(jí)側(cè)傳播到次級(jí)側(cè)的耦合通道,并且噪聲通過(guò)阻抗從輸出電路傳播到接地端。CM 電流主路徑(在圖 3 中由 ICM-SEC 表示)為,從變壓器的初級(jí)側(cè)流到次級(jí)側(cè),并通過(guò)阻抗從輸出電路流到接地端。與非隔離轉(zhuǎn)換器類(lèi)似,使用較小的開(kāi)關(guān)節(jié)點(diǎn)覆銅面積,將 MOSFET 散熱器(如果需要)連接到 PGND,同時(shí)避免開(kāi)關(guān)節(jié)點(diǎn)完全通過(guò)過(guò)孔連接到電路板底部,這些措施都能消除從 MOSFET 漏極到接地端的耦合(在圖 3 中用 ICM-PRI 表示)。
對(duì)于此處所述的情況,與變壓器相關(guān)的以下三大考量因素適用。
首先,緊密耦合變壓器繞組可以最大限度地降低漏電感,從而實(shí)現(xiàn)高效率和高可靠性,同時(shí)降低開(kāi)關(guān)電壓應(yīng)力。交錯(cuò)設(shè)計(jì)是降低漏電感和繞組交流電阻的常用技術(shù),因此,繞組間電容會(huì)相對(duì)變大。此外,對(duì)于具有印刷電路板 (PCB) 嵌入式繞組的平面變壓器,由于各個(gè)層堆疊緊密,各層的表面積大,因此,繞組間電容比傳統(tǒng)的繞線型設(shè)計(jì)更高。在任何情況下,將脈沖噪聲電壓源施加到這種分布式寄生電容,都會(huì)產(chǎn)生相對(duì)高的位移電流。該電流從初級(jí)側(cè)繞組流向次級(jí)側(cè)繞組,然后返回到接地端,從而產(chǎn)生較大的 CM 噪聲。
其次,與寄生繞組間電容諧振的漏電感可能導(dǎo)致測(cè)得的 EMI 頻譜中出現(xiàn)明顯的高頻 CM 噪聲峰值。
第三,由于磁芯材料介電常數(shù)較高,對(duì)電場(chǎng)的阻抗低,因此,由高 dv/dt 節(jié)點(diǎn)產(chǎn)生的雜散近電場(chǎng)很容易通過(guò)變壓器磁芯耦合。然而,如果將磁芯包上銅箔并將銅箔連接到 PGND,則磁芯與地之間的寄生電容 (CME) 會(huì)很小。
通常,反激式變壓器設(shè)計(jì)的優(yōu)化不僅關(guān)乎解決方案尺寸、外形、效率和熱性能,對(duì) CM 噪聲性能也有巨大影響。